Compare commits

...

No commits in common. "master" and "main" have entirely different histories.
master ... main

5 changed files with 140 additions and 320 deletions

153
.gitignore vendored
View File

@ -1,7 +1,13 @@
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.pyc
*.pyo
*.pyd
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
@ -15,25 +21,142 @@ parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# Virtual environments
venv/
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# IDE
.vscode/
.idea/
*.swp
*.swo
# Spyder project settings
.spyderproject
.spyproject
# OS
.DS_Store
Thumbs.db
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# Model cache
.halp/

View File

@ -1,77 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
This is a Python-based local AI assistant called "halp" that provides a GUI interface for running shell commands via an AI agent. The application uses a local language model (Yi-Coder-1.5B-Chat) to interpret user requests and execute shell commands accordingly.
## Key Components
- **local_agent_ui.py**: Main application with GUI interface using customtkinter, AI model integration, and shell command execution capabilities
- **install_right_click.py**: Windows registry installer that adds a right-click context menu option to launch the assistant from any folder
## Dependencies
The project requires these Python packages:
- customtkinter (GUI framework)
- torch (PyTorch for model inference)
- transformers (Hugging Face transformers library)
- pynput (keyboard hotkey detection)
- protobuf (protocol buffers for tokenizer)
- sentencepiece (tokenizer backend)
### Installation
```bash
pip install customtkinter torch transformers pynput protobuf sentencepiece
```
## Development Commands
### Running the Application
```bash
python3 local_agent_ui.py [optional_working_directory]
```
### Installing Right-Click Context Menu (Windows)
```bash
python3 install_right_click.py
```
### Uninstalling Right-Click Context Menu (Windows)
```bash
python3 install_right_click.py uninstall
```
## Architecture
The application follows a multi-threaded architecture:
1. **Main UI Thread**: Handles the customtkinter GUI, message display, and user input
2. **AI Processing Thread**: Runs the language model inference and command execution logic
3. **Keyboard Listener**: Global hotkey detection (backtick key by default) for showing/hiding the window
### Key Features
- **Global Hotkey**: Press backtick (`) to toggle window visibility
- **Context-Aware**: Launches with the current working directory as context
- **Command Execution**: AI agent can execute shell commands and observe results
- **Conversational Loop**: Multi-step reasoning with up to 5 iterations per task
### AI Agent Workflow
1. User provides a task
2. AI generates reasoning and potential shell commands
3. Commands are executed with stdout/stderr captured
4. Results are fed back to the AI for next steps
5. Process continues until "DONE" or iteration limit reached
## Configuration
Key configuration constants in local_agent_ui.py:
- `MODEL_ID`: "01-ai/Yi-Coder-1.5B-Chat" (can be changed to other compatible models)
- `HOTKEY`: Backtick key for window toggle
- Iteration limit: 5 steps per task to prevent loops
## Platform Notes
- Designed primarily for Windows (uses Windows registry for context menu)
- Shell commands executed with `shell=True` for Windows compatibility
- Working directory context passed via command line arguments

2
README.md Normal file
View File

@ -0,0 +1,2 @@
# halp

View File

@ -1,53 +0,0 @@
pimport sys
import os
import winreg as reg
# --- Configuration ---
# The text that will appear in the right-click menu
MENU_ITEM_NAME = "Open AI Assistant Here"
# --- Main Logic ---
def install():
try:
# Get the absolute path to the python executable and the main script
python_exe = sys.executable
script_path = os.path.abspath("local_agent_ui.py")
# The command that will be executed when the menu item is clicked
# %V is a placeholder that Windows replaces with the directory you right-clicked in
command = f'"{python_exe}" "{script_path}" "%V"'
# Registry path for the context menu on the background of a folder
key_path = r'Directory\\Background\\shell'
# Create the main key for our menu item
with reg.CreateKey(reg.HKEY_CLASSES_ROOT, f'{key_path}\\{MENU_ITEM_NAME}') as key:
# Create the 'command' subkey and set its value to our command
with reg.CreateKey(key, 'command') as command_key:
reg.SetValue(command_key, None, reg.REG_SZ, command)
print(f"Successfully installed '{MENU_ITEM_NAME}' context menu item.")
print("You can now right-click inside any folder to launch the assistant with that folder as context.")
except Exception as e:
print(f"Error: {e}")
print("Please try running this script as an administrator.")
def uninstall():
try:
key_path = r'Directory\\Background\\shell'
reg.DeleteKey(reg.HKEY_CLASSES_ROOT, f'{key_path}\\{MENU_ITEM_NAME}\\command')
reg.DeleteKey(reg.HKEY_CLASSES_ROOT, f'{key_path}\\{MENU_ITEM_NAME}')
print(f"Successfully uninstalled '{MENU_ITEM_NAME}'.")
except FileNotFoundError:
print("Menu item not found. Nothing to uninstall.")
except Exception as e:
print(f"Error: {e}")
print("Please try running this script as an administrator.")
if __name__ == "__main__":
if len(sys.argv) > 1 and sys.argv[1] == 'uninstall':
uninstall()
else:
install()

View File

@ -1,175 +0,0 @@
#!/usr/bin/env python
import customtkinter as ctk
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import subprocess
import shlex
import threading
import sys
import os
from pynput import keyboard
# --- Configuration ---
MODEL_ID = "01-ai/Yi-Coder-1.5B-Chat"
HOTKEY = keyboard.KeyCode.from_char('`')
# --- 1. AI Model Loading (in a separate thread to not freeze UI) ---
print("Loading model... This may take a moment.")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
)
print("Model loaded successfully.")
# --- 2. Tool: Shell Command Executor ---
def execute_shell_command(command: str, working_dir: str):
try:
# Use shell=True for better compatibility with Windows built-in commands
# and to handle complex commands without shlex.
result = subprocess.run(
command,
capture_output=True,
text=True,
shell=True,
cwd=working_dir
)
return {
"stdout": result.stdout,
"stderr": result.stderr,
"returncode": result.returncode,
}
except Exception as e:
return {"stdout": "", "stderr": str(e), "returncode": 1}
# --- 3. The Main Application Window ---
class ChatWindow(ctk.CTk):
def __init__(self, working_dir):
super().__init__()
self.working_dir = working_dir
self.title(f"Local AI Assistant - CWD: {self.working_dir}")
self.geometry("700x500")
self.grid_columnconfigure(0, weight=1)
self.grid_rowconfigure(0, weight=1)
# Output Textbox
self.output_textbox = ctk.CTkTextbox(self, state="disabled", wrap="word")
self.output_textbox.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")
# Input Entry
self.input_entry = ctk.CTkEntry(self, placeholder_text="Type your task here and press Enter...")
self.input_entry.grid(row=1, column=0, padx=10, pady=10, sticky="ew")
self.input_entry.bind("<Return>", self.start_agent_task)
self.is_minimized = True # Start hidden
self.withdraw()
def add_message(self, message_type: str, content: str):
# This method ensures UI updates happen on the main thread
self.output_textbox.configure(state="normal")
self.output_textbox.insert("end", f"[{message_type}]\n{content}\n\n")
self.output_textbox.configure(state="disabled")
self.output_textbox.see("end")
def toggle_visibility(self):
if self.is_minimized:
self.deiconify() # Show the window
self.attributes('-topmost', 1) # Bring to front
self.focus()
self.attributes('-topmost', 0)
else:
self.withdraw() # Hide the window
self.is_minimized = not self.is_minimized
def start_agent_task(self, event=None):
task = self.input_entry.get()
if not task:
return
self.input_entry.delete(0, "end")
self.after(0, self.add_message, "User", task)
# Run the agent in a separate thread to avoid freezing the UI
agent_thread = threading.Thread(target=self.run_agent, args=(task,))
agent_thread.start()
def run_agent(self, task: str):
system_prompt = f"""You are a helpful AI assistant that executes shell commands on Windows in the directory '{self.working_dir}'.
You can use the `execute_shell_command(command)` function.
Based on the output, decide the next step.
When finished, respond with "DONE" and a summary.
Example:
User: List all files in the current folder.
Assistant: I need to list files. I will use the `dir` command.
<execute_shell_command>dir</execute_shell_command>
<observation>
{{"stdout": " Volume in drive C is OS...", "stderr": "", "returncode": 0}}
</observation>
I have listed the files.
DONE: I have listed the files and folders in the current directory."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": task},
]
for _ in range(5): # Limit steps to prevent loops
self.after(0, self.add_message, "Agent", "Thinking...")
input_ids = tokenizer.apply_chat_template(
conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt'
)
output_ids = model.generate(input_ids.to(model.device), max_new_tokens=200, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
self.after(0, self.add_message, "Agent Thought", response)
if "DONE" in response:
break
if "<execute_shell_command>" in response and "</execute_shell_command>" in response:
command = response.split("<execute_shell_command>")[1].split("</execute_shell_command>")[0].strip()
self.after(0, self.add_message, "Executing", command)
result = execute_shell_command(command, self.working_dir)
observation_text = f'STDOUT:\n{result["stdout"]}\nSTDERR:\n{result["stderr"]}\nRETURN CODE: {result["returncode"]}'
self.after(0, self.add_message, "Observation", observation_text)
messages.append({"role": "assistant", "content": response})
messages.append({"role": "user", "content": f"<observation>\n{str(result)}\n</observation>"})
else:
self.after(0, self.add_message, "Agent", "Could not determine a command. Stopping.")
break
# --- 4. Main Execution Logic ---
def main():
# Set the current working directory
# If launched from the context menu, sys.argv[1] will be the folder path
if len(sys.argv) > 1:
current_dir = sys.argv[1]
try:
os.chdir(current_dir)
except Exception as e:
print(f"Failed to change directory to {current_dir}: {e}")
current_dir = os.getcwd() # Fallback to script's dir
else:
current_dir = os.getcwd()
print(f"Application starting in directory: {current_dir}")
app = ChatWindow(working_dir=current_dir)
def on_press(key):
if key == HOTKEY:
app.toggle_visibility()
listener = keyboard.Listener(on_press=on_press)
listener.start()
app.mainloop()
listener.stop()
if __name__ == "__main__":
main()